CMAQ v5.1 SAPRC07tic AE6i
Contents
Brief Description
The SAPRC07tic AE6i gas-phase mechanism was first introduced in v5.0.2 and is based on the work of Xie et al. (2013) to better describe isoprene and its later generation oxidation products. In CMAQ v5.1, the mechanism of Xie et al. is updated to include greater detail for isoprene oxidation under RO2+NO dominant conditions (see Lin et al. 2013) as well as other updates common to SAPRC07t-based mechanisms and AERO6-based mechanisms. SAPRC07tic is designed to work only with the new AERO6i aerosol module which includes speciated predictions of aerosol from isoprene epoxydiols (IEPOX) and MPAN products (HMML and MAE) following Pye et al. (2013), SOA from explicit BVOC organic nitrates, and SOA from glyoxal/methylglyoxal uptake onto particles (previously only considered in clouds). Updates were also made to deposition surrogates. Changes are documented in Pye et al. (2015).
SAPRC07tic Mechanism Updates
Isoprene System
- Updated high-NOx (RO2+NO) isoprene chemistry to explicitly track MACR peroxy radical from abstraction channel leading to MPAN and form MAE+HMML (Lin et al. 2013).
- Updated isoprene nitrate reaction rates with OH, NO, O3 (Lee et al. 2014).
- Added isomerization of MACR+OH peroxy radical (addition channel) (Crounse et al. 2012).
- Minor update to MACR+OH peroxy radical product yields following Crounse et al. (2012) and references therein
- MACROO (product from addition channel): ~43-48% of MACR oxidation is addition to external olefinic carbon, ~0-9% is addition to internal olefinic carbon
- IMACO3 (product from abstraction channel leading to MPAN): ~45-50% of MACR oxidation
- Tracking of isoprene dinitrates from NO3 reaction for SOA purposes (ISOPNN)
SAPRC07t
- Added simplified ozone loss due to halogen chemistry over sea-water (Reaction <HAL_Ozone>)
- implemented the nonaromatic changes found in the supplementary material for the paper by Carter and Gookyoung (2013).
- modified reaction BR22, BR32, BR43, and IS70, the MECO3, RCO3, BZCO3, and MACO3 reactions with HO2 based on IUPAC (2009) recommendations for HO2 + acyl radical reactions (last accessed Jan. 2015).
- corrected reaction <BE10>, ACETYLENE + OH, by setting the temperature power for k0 to zero and setting temperature for kinf to -2
- corrected reaction <BE04>, ETHENE + OH, by setting the temperature power to zero
- revised GLY reactions with OH and NO3 based IUPAC (2008) recomendation that introduces a new peroxy radical species HCOCO3 (last accessed Jan. 2015). <BP32><BP33>
- revised N2O5 + H2O heterogeneous reaction to yield HNO3 and CLNO2 (see: CMAQv5.1_ClNO2_chemistry)
- changed the OH + NO2 reaction based on the recommendation of IUPAC (last accessed Jan. 2015).
- removed species NO2EX, excited NO2, and its reactions (already inactive)
- Increased acrolein formation from 1,3-butadiene+OH <BT05> from 0.48 to 0.58 per Gookyoung Heo recommendation
Monoterpenes
- Removed SOA formation counter (TRPRXN) from APIN + NO3 and TERP + NO3 reaction
- Added explicit monoterpene nitrate (MTNO3) as SOA precursor
- Updated TERP + NO3 reaction products prioritizing nitrate functionality and conservation of nitrogen
- APIN no longer forms SOA from NO3 reaction
Complete mechanism
Organic aerosol in AERO6i
- Added PAH (naphthalene) SOA (Pye and Pouliot 2012)
- Updated alkane SOA (Pye and Pouliot 2012)
- Added SOA from uptake of IEPOX and IMAE/HMML on acidic particles (Pye et al. 2013)
- Replaced Odum 2-product APIN+NO3 and TERP+NO3 SOA with explicit monoterpene nitrate SOA (MTNO3) (Pye et al. 2015)
- Added isoprene nitrate SOA (from ISOPRENE+NO3 reaction, Pye et al. 2015)
- Added SOA from glyoxal/methylglyoxal heterogeneous uptake onto particles (Pye et al. 2015, following Liggio et al. 2005 and Fu et al. 2008 with an uptake coefficient of 0.0029)
- New SOA partitioning routines (see CMAQv5.1_SOA_Update)
Schematic of SOA in aero6i
Organic aerosol species in v5.1 aero6i
Table 1: POA species introduced in CMAQ v5.0
POA species | description | molec wt (g/mol) | reference |
---|---|---|---|
POCI | primary organic carbon in aitken mode | 220 | Simon and Bhave 2012 |
POCJ | primary organic carbon in accumulation mode | 220 | Simon and Bhave 2012 |
ANCOMI | non-carbon organic matter (H, O, etc.) attached to POC in aitken mode | 220 | Simon and Bhave 2012 |
ANCOMJ | non-carbon organic matter (H, O, etc.) attached to POC in accumulation mode | 220 | Simon and Bhave 2012 |
Table 2: SOA species in AERO6i. Species in bold are only in aero6i or differ from the species with the same name in aero6
- SOA species in blue are semivolatile.
- SOA species in green are low volatility and treated as effectively nonvolatile.
- SOA species in yellow form due to reactive uptake and are treated as nonvolatile.
- SOA formed from particle-phase processing is in purple.
SOA species | version introduced | precursor | oxidants | semivolatile | alpha (mass-based) | C* (ug/m3) | enthlapy (kJ/mol) | number of C | molec wt (g/mol) | OM/OC | Model ref | Experimental ref |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AALK1 | v5.1 | long-chain alkanes | OH | SV_ALK1 | 0.0334 | 0.1472 | 53.0 | 12 | 168 | 1.17 | Pye and Pouliot 2012 | Presto et al. 2010 |
AALK2 | v5.1 | long-chain alkanes | OH | SV_ALK2 | 0.2164 | 51.8774 | 53.0 | 12 | 168 | 1.17 | Pye and Pouliot 2012 | Presto et al. 2010 |
AXYL1 | v4.7 | XYL/ARO2 excluding naphthalene | OH,NO | SV_XYL1 | 0.0310 | 1.3140 | 32.0 | 8 | 192 | 2.0 | Carlton et al 2010 | Ng et al. 2007 |
AXYL2 | v4.7 | XYL/ARO2 excluding naphthalene | OH,NO | SV_XYL2 | 0.0900 | 34.4830 | 32.0 | 8 | 192 | 2.0 | Carlton et al. 2010 | Ng et al. 2007 |
AXYL3 | v4.7 | XYL/ARO2 excluding naphthalene | OH,HO2 | NA-nonvolatile | 0.36 | NA | NA | NA | 192 | 2.0 | Carlton et al. 2010 | Ng et al. 2007 |
ATOL1 | v4.7 | TOL/ARO1 | OH,NO | SV_TOL1 | 0.0310 | 2.3260 | 18.0 | 7 | 168 | 2.0 | Carlton et al. 2010 | Ng et al. 2007 |
ATOL2 | v4.7 | TOL/ARO1 | OH,NO | SV_TOL2 | 0.0900 | 21.2770 | 18.0 | 7 | 168 | 2.0 | Carlton et al. 2010 | Ng et al. 2007 |
ATOL3 | v4.7 | TOL/ARO1 | OH,HO2 | NA-nonvolatile | 0.30 | NA | NA | NA | 168 | 2.0 | Carlton et al. 2010 | Ng et al. 2007 |
ABNZ1 | v4.7 | benzene | OH,NO | SV_BNZ1 | 0.0720 | 0.3020 | 18 | 6 | 144 | 2.0 | Carlton et al. 2010 | Ng et al. 2007 |
ABNZ2 | v4.7 | benzene | OH,NO | SV_BNZ2 | 0.8880 | 111.1100 | 18 | 6 | 144 | 2.0 | Carlton et al. 2010 | Ng et al. 2007 |
ABNZ3 | v4.7 | benzene | OH,HO2 | NA-nonvolatile | 0.37 | NA | NA | NA | 144 | 2.0 | Carlton et al. 2010 | Ng et al. 2007 |
APAH1 | v5.1 | naphthalene | OH,NO | SV_PAH1 | 0.2100 | 1.6598 | 18 | 10 | 243 | 2.03 | Pye and Pouliot 2012 | Chan et al. 2009 |
APAH2 | v5.1 | naphthalene | OH,NO | SV_PAH2 | 1.0700 | 264.6675 | 18 | 10 | 243 | 2.03 | Pye and Pouliot 2012 | Chan et al. 2009 |
APAH3 | v5.1 | naphthalene | OH,HO2 | NA-nonvolatile | 0.73 | NA | NA | NA | 243 | 2.03 | Pye and Pouliot 2012 | Chan et al. 2009 |
AISO1 | v4.7 | isoprene | OH,NO3 | SV_ISO1 | 0.2320 | 116.010 | 40 | 5 | 96 | 1.6 | Carlton et al. 2010 | Kroll et al. 2006 |
AISO2 | v4.7 | isoprene | OH,NO3 | SV_ISO2 | 0.0288 | 0.6170 | 40 | 5 | 96 | 1.6 | Carlton et al. 2010 | Kroll et al. 2006 |
AISO3 | deprecated | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
ATRP1 | v4.7 | APIN+TERP monoterpenes | OH,O3P,O3 | SV_TRP1 | 0.1393 | 14.7920 | 40 | 10 | 168 | 1.4 | Carlton et al. 2010 | Griffin et al. 1999 |
ATRP2 | v4.7 | APIN+TERP monoterpenes | OH,O3P,O3 | SV_TRP2 | 0.4542 | 133.7297 | 40 | 10 | 168 | 1.4 | Carlton et al. 2010 | Griffin et al. 1999 |
ASQT | v4.7 | sesquiterpenes | OH,O3,NO3 | SV_SQT2 | 1.5370 | 24.9840 | 40 | 15 | 378 | 2.1 | Carlton et al. 2010 | Griffin et al. 1999 |
AOLGA | v4.7 | anthropogenic SOA | time | NA-nonvolatile | NA | NA | NA | NA | 176.4 | 2.1 | Carlton et al. 2010 | Kalberer et al. 2004 |
AOLGB | v4.7 | biogenic SOA | time | NA-nonvolatile | NA | NA | NA | NA | 252 | 2.1 | Carlton et al. 2010 | Kalberer et al. 2004 |
AORGC | v4.7 | SOA from cloud processing of glyoxal, methylglyoxal | OH | NA-nonvolatile | NA | NA | NA | NA | 177 | 2.0 | Carlton et al. 2008 | |
AGLY | v5.1 | SOA from aerosol uptake of glyoxal, methylglyoxal | NA | NA-nonvolatile | NA | NA | NA | NA | 66.40 | 2.13 | Pye et al. 2015 | Liggio et al. 2005 |
AMTNO3 | v5.1 | TERP organic nitrates | OH/NO,NO3 | MTNO3 | NA | 12.0 | 40 | NA | 231 | 1.9 | Pye et al. 2015 | Fry et al. 2009 |
AISOPNN | v5.1 | ISOP+NO3 organic nitrates | NO3 | ISOPNN | NA | 8.9 | 40 | NA | 226 | 3.8 | Pye et al. 2015 | Rollins et al. 2009 |
AMTHYD | v5.1 | AISOPNN+AMTNO3 | NA-hydrolysis | NA-nonvolatile | NA | NA | NA | NA | 185 | 1.54 | Pye et al. 2015 | Boyd et al. 2015 |
AIETET | v5.1 | IEPOX | NA-acid catalyzed uptake | NA-nonvolatile | NA | NA | NA | NA | 136.15 | 2.27 | Pye et al. 2013 | Eddingsaas et al. 2010 |
AIEOS | v5.1 | IEPOX | NA-acid catalyzed uptake | NA-nonvolatile | NA | NA | NA | NA | 216.20 | 3.6 | Pye et al. 2013 | Eddingsaas et al. 2010 |
AIDIM | v5.1 | IEPOX | NA-acid catalyzed uptake | NA-nonvolatile | NA | NA | NA | NA | 248.23 | 2.07 | Pye et al. 2013 | Eddingsaas et al. 2010 |
AIMGA | v5.1 | MAE+HMML | NA-acid catalyzed uptake | NA-nonvolatile | NA | NA | NA | NA | 120.10 | 2.5 | Pye et al. 2013 | Eddingsaas et al. 2010 |
AIMOS | v5.1 | MAE+HMML | NA-acid catalyzed uptake | NA-nonvolatile | NA | NA | NA | NA | 200.16 | 4.17 | Pye et al. 2013 | Eddingsaas et al. 2010 |
The reference temperature for table properties (C* and enthalpy) is 298 K.
If more than one gas-phase precursor is named, the first name corresponds to CB05 and the second to SAPRC07.
All SV_* gas-phase semivolatiles use a dry deposition surrogate of ORA (acetic acid, H-law=4.1e3 M/atm) and a wet deposition surrogate of ADIPIC ACID (H-law=2.0e8 M/atm).
Number of carbons is used to conserve carbon upon oligomerization to nonvolatile form.
Summary of changes
New Species
Table 3: New species in SAPRC07tic_ae6i
New Species | Phase | Description |
---|---|---|
HCOCO3 | gas | Peroxy radical from H-abstraction of glyoxal |
IMACO3 | gas | Peroxyacyl radicals formed from methacrolein + OH abstraction channel |
IMPAA | gas | Methacrylicperoxy acid |
IMAPAN | gas | Methacryloyl peroxy nitrate |
IMAE | gas | Methacrylic acid epoxide |
IHMML | gas | Hydroxymethyl-methyl-α-lactone |
AIETET | aerosol | 2-methyltetrols from IEPOX uptake onto particles |
AIEOS | aerosol | IEPOX-derived organosulfate from IEPOX uptake onto particles |
ADIM | aerosol | IEPOX-derived oligomers from IEPOX uptake onto particles |
AIMGA | aerosol | 2-methylglyceric acid from MAE+HMML uptake onto particles |
AIMOS | aerosol | MAE-derived organosulfate from MAE+HMML uptake onto particles |
SOAALK | gas | Alkane SOA precursor, C6 and longer cyclic, C8 and larger linear/branched alkanes, equivalent to ~10% of ALK4 + 70% of ALK5 |
NAPHTHAL | gas | PAH SOA precursor/naphthalene, products are the same as ARO2MN with exception of PAHRO2 reaction counter |
ARO2MN | gas | ARO2 minus naphthalene |
AH3OP | aerosol | Hydronium ion (predicted by ISORROPIA) |
APAH1,2,3 | aerosol | PAH (naphthalene) aerosol |
AALK1,2 | aerosol | alkane aerosol |
AGLYJ | aerosol | glyoxal/methylglyoxal aerosol due to uptake on particles |
AISOPNNJ | aerosol | SOA from isoprene dinitrates (C*=8.9 ug/m3) |
AMTHYDJ | aerosol | SOA from hydrolysis of particle-phase organic nitrates |
AMTNO3J | aerosol | SOA from monoterpene nitrates (C*=12 ug/m3) |
ISOPNN* | gas | second generation isoprene dinitrate from NO3 reaction |
MTNO3 | gas | monoterpene(TERP)-derived organic nitrates (exluding alpha-pinene) |
TERPNRO2 | gas | TERP+NO3 peroxy radical |
*PROPNN (an existing species) was modified to include isoprene nitrates from NO3 reaction that only have one nitrate (formerly PROPNNB). PROPNNB with two nitrate groups was mapped to ISOPNN.
Removed Species
NO2EX: Excited NO2
AALKJ: Alkane aerosol
PROPNNB: Second generation isoprene nitrate from isoprene+NO3, combined with PROPNN or respeciated as ISOPNN (dinitrate) depending on expected nitrate functionality
New files
- MECHS/saprc07tic_ae6i/*
- gas/ebi_saprc07tic_ae6i/*
- aero/aero6i/*
Significance and Impact
- Increased isoprene SOA in isoprene source regions at all hours of day
- Significantly increased SOA at night due to MTNO3 partitioning
- Increased SOA at all hours due to glyoxal/methylglyoxal uptake
- Increased formaldehyde and acetaldehyde
Other information
Calculation of OC and OM (for species definition file and combine). Be sure to check the spacing and place on one line before using.
AOCIJ ,ugC/m3 ,(AXYL1J[1]+AXYL2J[1]+AXYL3J[1])/2.0+ (ATOL1J[1]+ATOL2J[1]+ATOL3J[1])/2.0+ (ABNZ1J[1]+ABNZ2J[1]+ABNZ3J[1])/2.0 + (AISO1J[1]+AISO2J[1])/1.6+AISO3J[1]/2.7+ (ATRP1J[1]+ATRP2J[1])/1.4+ASQTJ[1]/2.1+ 0.64*(AALK1J[1]+AALK2J[1])+ AORGCJ[1]/2.0+(AOLGBJ[1]+AOLGAJ[1])/2.1+ APOCI[1]+APOCJ[1]+ APAH1J[1]/2.03+APAH2J[1]/2.03+APAH3J[1]/2.03+ AIETETJ[1]/2.27+AIEOSJ[1]/3.6+ADIMJ[1]/2.07+AIMGAJ[1]/2.5+AIMOSJ[1]/4.17+ AMTNO3J[1]/1.9+AISOPNNJ[1]/3.8+AMTHYDJ[1]/1.54+ AGLYJ[1]/2.13
AOMIJ ,ug/m3 ,AXYL1J[1]+AXYL2J[1]+AXYL3J[1]+ ATOL1J[1]+ATOL2J[1]+ATOL3J[1]+ ABNZ1J[1]+ABNZ2J[1]+ABNZ3J[1]+ AISO1J[1]+AISO2J[1]+ATRP1J[1]+ATRP2J[1]+ASQTJ[1]+ (AALK1J[1]+AALK2J[1])+AORGCJ[1]+ APOCI[1]+APOCJ[1]+APNCOMI[1]+APNCOMJ[1]+ APAH1J[1]+APAH2J[1]+APAH3J[1]+ AIETETJ[1]+AIEOSJ[1]+ADIMJ[1]+AIMGAJ[1]+AIMOSJ[1]+ AMTNO3J[1]+AISOPNNJ[1]+AMTHYDJ[1]+AGLYJ[1]
References
Boyd, C. M.; Sanchez, J.; Xu, L.; Eugene, A. J.; Nah, T.; Tuet, W. Y.; Guzman, M. I.; Ng, N. L., Secondary organic aerosol formation from the b-pinene+NO3 system: effect of humidity and peroxy radical fate. Atmos. Chem. Phys. 2015, 15 (13), 7497-7522. article
Carlton, A. G.; Bhave, P. V.; Napelenok, S. L.; Edney, E. D.; Sarwar, G.; Pinder, R. W.; Pouliot, G. A.; Houyoux, M., Model representation of secondary organic aerosol in CMAQv4.7. Environmental Science & Technology 2010, 44 (22), 8553-8560. article
Carlton, A. G.; Turpin, B. J.; Altieri, K. E.; Seitzinger, S. P.; Mathur, R.; Roselle, S. J.; Weber, R. J., CMAQ Model Performance Enhanced When In-Cloud Secondary Organic Aerosol is Included: Comparisons of Organic Carbon Predictions with Measurements. Environmental Science & Technology 2008, 42 (23), 8798-8802. article
Carter, W. P. L.; Heo, G., Development of revised SAPRC aromatics mechanisms. Atmos. Environ. 2013, 77 (0), 404-414. article
Chan, A. W. H.; Kautzman, K. E.; Chhabra, P. S.; Surratt, J. D.; Chan, M. N.; Crounse, J. D.; Kurten, A.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: Implications for oxidation of intermediate volatility organic compounds (IVOCs) Atmos. Chem. Phys. 2009, 9 (9), 3049-3060. article
Crounse, J. D.; Knap, H. C.; Ornso, K. B.; Jorgensen, S.; Paulot, F.; Kjaergaard, H. G.; Wennberg, P. O., Atmospheric Fate of Methacrolein. 1. Peroxy Radical Isomerization Following Addition of OH and O-2. J. Phys. Chem. A. 2012, 116 (24), 5756-5762. article
Eddingsaas, N. C.; VanderVelde, D. G.; Wennberg, P. O., Kinetics and products of the acid-catalyzed ring-opening of atmospherically relevant butyl epoxy alcohols. J. Phys. Chem. A. 2010, 114 (31), 8106-8113. article
Fry, J. L.; Kiendler-Scharr, A.; Rollins, A. W.; Wooldridge, P. J.; Brown, S. S.; Fuchs, H.; Dubé, W.; Mensah, A.; dal Maso, M.; Tillmann, R.; Dorn, H. P.; Brauers, T.; Cohen, R. C., Organic nitrate and secondary organic aerosol yield from NO3 oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model. Atmos. Chem. Phys. 2009, 9 (4), 1431-1449. article
Fu, T.-M.; Jacob, D. J.; Wittrock, F.; Burrows, J. P.; Vrekoussis, M.; Henze, D. K., Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J. Geophys. Res. 2008, 113 (D15), D15303. article
Griffin, R. J.; Cocker, D. R.; Flagan, R. C.; Seinfeld, J. H., Organic aerosol formation from the oxidation of biogenic hydrocarbons. J. Geophys. Res. 1999, 104 (D3), 3555-3567. article
Kalberer, M.; Paulsen, D.; Sax, M.; Steinbacher, M.; Dommen, J.; Prevot, A. S. H.; Fisseha, R.; Weingartner, E.; Frankevich, V.; Zenobi, R.; Baltensperger, U., Identification of polymers as major components of atmospheric organic aerosols. Science 2004, 303 (5664), 1659-1662. article
Kroll, J. H.; Ng, N. L.; Murphy, S. M.; Flagan, R. C.; Seinfeld, J. H., Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol. 2006, 40 (6), 1869-1877. article
Lee, L.; Teng, A. P.; Wennberg, P. O.; Crounse, J. D.; Cohen, R. C., On Rates and Mechanisms of OH and O-3 Reactions with Isoprene-Derived Hydroxy Nitrates. J. Phys. Chem. A. 2014, 118 (9), 1622-1637. article
Liggio, J.; Li, S.-M.; McLaren, R., Reactive uptake of glyoxal by particulate matter. J. Geophys. Res. 2005, 110 (D10), D10304.article
Lin, Y.-H.; Zhang, H.; Pye, H. O. T.; Zhang, Z.; Marth, W. J.; Park, S.; Arashiro, M.; Cui, T.; Budisulistiorini, S. H.; Sexton, K. G.; Vizuete, W.; Xie, Y.; Luecken, D. J.; Piletic, I. R.; Edney, E. O.; Bartolotti, L. J.; Gold, A.; Surratt, J. D., Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides. Proc. Natl. Acad. Sci. USA. 2013, 110 (17), 6718-6723. article
Ng, N. L.; Kroll, J. H.; Chan, A. W. H.; Chhabra, P. S.; Flagan, R. C.; Seinfeld, J. H., Secondary organic aerosol formation from m-xylene, toluene, and benzene. Atmos. Chem. Phys. 2007, 7 (14), 3909-3922. article
Presto, A. A.; Miracolo, M. A.; Donahue, N. M.; Robinson, A. L.Secondary organic aerosol formation from high-NOx photo-oxidation of low volatility precursors: n-alkanes Environ. Sci. Technol. 2010, 44, 2029– 2034. article
Pye, H. O. T., D. J. Luecken, L. Xu, C. M. Boyd, N. L. Ng, K. Baker, B. A. Ayres, J. O. Bash, K. Baumann, W. P. L. Carter, E. Edgerton, J. L. Fry, W. T. Hutzell, D. Schwede, P. B. Shepson, Modeling the current and future roles of particulate organic nitrates in the southeastern United States, Environ. Sci. Technol., 2015. article
Pye, H. O. T., R. W. Pinder, I. Piletic, Y. Xie, S. L. Capps, Y.-H. Lin, J. D. Surratt, Z. Zhang, A. Gold, D. J. Luecken, W. T. Hutzell, M. Jaoui, J. H. Offenberg, T. E. Kleindienst, M. Lewandowski, and E. O. Edney, Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation, Environ. Sci. Technol., 2013, 47 (19), 11056-11064. article
Pye, H. O. T. and G. A. Pouliot, Modeling the role of alkanes, polycyclic aromatic hydrocarbons, and their oligomers in secondary organic aerosol formation, Environ. Sci. Technol., 2012, 46 (11), 6041-6047. article
Rollins, A. W.; Kiendler-Scharr, A.; Fry, J. L.; Brauers, T.; Brown, S. S.; Dorn, H. P.; Dubé, W. P.; Fuchs, H.; Mensah, A.; Mentel, T. F.; Rohrer, F.; Tillmann, R.; Wegener, R.; Wooldridge, P. J.; Cohen, R. C., Isoprene oxidation by nitrate radical: alkyl nitrate and secondary organic aerosol yields. Atmos. Chem. Phys. 2009, 9 (18), 6685-6703. article
Simon, H. and P. V. Bhave, Simulating the degree of oxidation in atmospheric organic particles, Environ. Sci. Technol., 2012, 46, 331-339, 2012. article
Xie, Y.; Paulot, F.; Carter, W. P. L.; Nolte, C. G.; Luecken, D. J.; Hutzell, W. T.; Wennberg, P. O.; Cohen, R. C.; Pinder, R. W., Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality. Atmos. Chem. Phys. 2013, 13 (16), 8439-8455. article
Contact
Havala Pye, NERL, U.S. EPA